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Lattice model for cold and warm swelling of polymers in water
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We define a lattice model for the interaction of a polymer with water. We solve the model in a suitable
approximation. In the case of a nonpolar homopolymer, for reasonable values of the parameters, the polymer
is found in a noncompact conformation at low temperature; as the temperature grows, there is a sharp transition
towards a compact state, then, at higher temperatures, the polymer swells again. This behavior closely reminds
one of that of proteins that are unfolded at both low and high temperatures.

PACS numbds): 61.25.Hq, 05.20-y, 05.40.Fb, 87.10:e

The theoretical modeling of the behavior of polymers inwith a sharp peak in the specific heat of the water-polymer
aqueous solution is a long-standing problem which has resystem; then, at higher temperatures, the polymer swells
ceived considerable attention also in connection with theagain, smoothly. This behavior reminds one of proteins, that
problem of protein folding. It is commonly believéd] that ~ are unfolded at both low and high temperatuiiéls
the organization of water molecules in quasiordered struc- Let us now define our model. We consider a
tures around nonpolar monomers plays a fundamental role if-rdimensional lattice wittN; sites and coordination number
stabilizing the folded “native” state of a protein, namely, the z Each lattice site is occupied either by a monomer of the
biologically active state. In simple models of protein folding, Polymer or by a water “cluster.” The polymer is made lgf
however, water is usually taken into account within the defi-nmonomers. Each monomer can be either hydroph@ijcor
nition of the interactions between amino acids, rather thaolar (P), to which cases we associate=0,1, respectively.
explicitly considering water-monomer interactions. The ra-The sequence dfi's andP’s is fixed, so that ther’s are not
tionale for this approacf] is that water behaves as a bad dynamical variables. The number of water clustersNjs
solvent for hydrophobic monomers, and this can be modelee- Ns—N. Each water cluster is a system wf water mol-
by an effective Hamiltonian with attractive monomer- ecules, to account for the fact that several water molecules
monomer interactions. However, an “exact” effective are affected by the presence of a monomer. For each cluster,
Hamiltonian, obtained from a partial trace over water de-the state-space has an ordinary part, characterizegd=b§
grees of freedom, should in principle depend also on thénd made up of an infinity of state¥=0,1,2 ... =, and a
temperature and on the conformation of the polymer. Hencegpecial part, withy=1, containing only the state “*.” This
it is interesting to study simple models where the role ofstate is special in the sense that it more favorably interacts
water can be considered explicitly. with hydrophobic monomers, as we will see in the following.

Here we introduce a lattice model where each site is ocThe choices of a discrete spectrum and of a unique special
cupied either by a monomer or by water molecules. Waterstate are made for the sake of simplicity.
monomer interactions depend on the state of water; water- The model Hamiltonian is written as a sum of a noninter-
water interactions are dealt with in a coarse-grained way. Tacting water term plus a water-polymer interaction; no en-
distinguish between the effect of the presence of water andrgy is associated to the polymer alone:
any other, monomer-monomer interactions are neglected.

The model can be thought of as a generalization of the one H="Huwater Hint - (1)
proposed by De Los Rios and CaldargLRC) [3]. Our i
generalization is an attempt to model more carefully the wa- € first term has the form

ter degrees of freedom, yet keeping the description as simple Ny,
as to obtain a model that can be approached by analytical _ S (1—v)+E* v
techniques. Specializing to the case of a nonpolar homopoly- Twater 121 [9(1=x) Xl @

mer, we introduce a suitable approximation scheme and
evaluate analytically the partition function, the specific heatwhereE* >0. For each labglthe stated; =0 represents ice,
and the average number of water-polymer contacts, which ise., a completely ordered state, with two hydrogen bonds per
a measure of the compactness of the polymer conformatiommolecule. Each water-filled site, representing a cellnof
We find that, for reasonable values of the parameters, thmolecules, in thay=0 state has & hydrogen-bonds, a frac-
polymer behaves as follows: at low temperatures, it is foundion of which is buried in the bulk of the cell, while the rest
in a noncompact conformation. As the temperature growsgonnects neighboring cells; we set the energy of this state
there is a sharp transition towards a compact state, associatedqual to zero. The stateg;=0; ¥;=1,2,...) areexcited
states obtained by adding kinetic energy to the water cluster:
the hydrogen bonds are weakened and, eventually, broken.
*Electronic address: pbr@athena.polito.it According to this coarse-grained description, which disre-
"Electronic address: lapo@polito.it gards the details of water-water interactions, the degeneracy
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g(9) of the energy levely is given by the number of ways Ny
in which one can assigr “quanta” of energy to them H(C)=E [(1=x)(F+K D+ x;(E*+I7)], (D)
molecules, i.e., the number of ordered partitionsyadbjects =1

; _/m+9-1
in m classesg(9)=(""» - _ _ where/;=/(C) is the number of contacts between itk
The special statex(=1; *) models the partial ordering \yater cluster anéi monomers. Denoting by, (C) the num-

that water molecules are believed to assume in presence ofia ¢ water clusters that havé contacts withH monomers
non-polar residuél]. It is indeed an excited states of energy the partition function of the model can be written as
E*, with a peculiar character: then water molecules are

thought of as geometrically ordered in the cell, so that

hydrogen-bond weakening and breaking affects only the sur- Z:; Z(C)= 2 {{nAC)1EN)Z(n(C)}), (53
face molecules in the water-filled site. An accurate evalua- sk

tion of the degeneracg* of this state would require a de-

tailed specification of the microscopic geometry of water, Z({n/(C)})=2 e AHO), (5b)
which is beyond the scope of the present analysis; neverthe- 19}

less, a crude estimate of it can be given by noticing that, in . .
the presence of a water-monomergcontﬂm{ﬁ%Zm(dgl’d) where = 1/T and {({n,(C)}:N) is the number of equiva-

water molecules shall rearrange in an ordered conformatiolrzleonr:fgfg;%roﬂ?'\?vﬂi {?‘; asaeggré]:tro(;f,sle&%h [\tlo Iéz.s’eozhtge
to maximize hydrogen-bonding. Then, reasoning as before - NOW,

* i . Cok rlotation let us puZ(C)=2({n,(C)}). Using Eq.(4), and
g will be given by the number of Wgﬁfﬁ]t]ci ;s_s@‘f E the fact that water cells do not interact with each other, so

. 1
quanta to thene molecules, i.e.g* =(" ", ), where  that it is possible to factoZ(C) according to the label§
[[+]] is the integer part of . =1,... Ny, Z(C) can be written as
The second term in Hamiltoniafd) is

z
NNy z(c)=Py* ] x2©, (6a)
/=1
Hin= 2, 2, Aij oi[d x;+K(1=x))], )
. wherex, =P /P, and

where Aj;=1 if i andj are nearest-neighbors ard;=0
otherwise,K >0 (respectivelyJ<0) is the energy codfre- P, —qg*e BE*+I) 4 o BK/

. . ,=9g"e e .
spectively gaim of a contact betwaea H monomer and a (1—e Am
water site in an ordinary stateespectively special * state
The form of Eq.(3) can be understood if we consider a The mean energy and the specific heat are evaluated in the
“droplet” of hydrophobic monomers in a water-filled lattice, standard way a$)=(H)=—dlogZ/dB and Cy=dU/JT.
and analyze the energy balance in exchanging a water sifEhe average number of water sites presentihgontacts
with a monomer(both taken from the respective bulkdf with the polymer can be computed as(n,)
the water is in an ordinary state, each contact with a mono=x,(dlog Z2/dx,), from which one can obtain the average
mer will break up to~m(@~ hydrogen bonds between (total) number ofH-water contacts{n.)==,/(n,), which
neighboring water cells. 18>0 is the energy involved in a is a measure of the compactness of the polymer. Another
bond(in units of the spacing between the leyethis process interesting observable is the average number of contacts with
yields an energy cost ¢€=m(?~*Da, while the cost willbe  water sites in the * state, given By} )= —Tdlog Z/4J.
zero if the water is in the special * state. At the same time, Notice that, even in the simple hydrophobic homopolymer
nonpolar residues interact more favorably with water tharcase, our model cannot be mapped onto a polymer model
with each other, due to the permanent dipole moment ofvith monomer-monomer contact interactions, because the
water[5]. This is taken into account by assuming an energypartition function(5) cannot be written in the form
gainJ(—a=sJ=<0) for a contact between water in the * state
and a hydrophobic monomer. It should be clear that this _ — ghn
theoretical framework is not meant to provide a detailed mi- Z_E £y &7 P10, ™
croscopic description of the physics of water, but rather to
account for the basic ingredients of nonpolar solvation: thevhere nyju=(M—2/n,)/2 is the number of monomer-
existence of an icelike ground state of zero entropy for watermonomer contacts and(nyy) is the number of polymer
and of a set of excited states, some of which may be particusonfigurations withn,, internal contacts, witth a true cou-
larly suited for interaction with nonpolar solutes, but involve pling constant, independent &fand{n,}.

a substantial entropy loss. Before going further with the discussion of the thermody-
Let us now study the equilibrium thermodynamical prop-namical properties of our model, let us note that the partition
erties of the model. To compute the partition function it isfunction of the DLRC mode[3] can be obtained from the
useful to introduce some notations. The maximum number opresent one with the substitutiong* —1, E*—0, (1
contacts between water amtl monomers is obtained when —e #)"M—q—1, due to the fact that in the DLRC model
the polymer is in an extended configuration, so thiat (z  all the states are equivaletwith zero energyfor pure wa-
—2)Ny+ o+ 0oy, whereNy is the number of non-polar ter, and when a water-monomer interaction takes place, the
residues. Given a configurati@of the polymer, the energy special state has zero entropy, while the degeneracy of the
of the system can be written as excited states is independent of the temperature. In both

(6b)
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models one has to perform a sum over the conformations of Resorting to the above assumptions we can evaluate the

the polymer to calculate the thermodynamical functionspartition function. In the homopolymer case is always

This is a hard numerical task when the length of the polymeeven, so that we sek=n.2, k™=n""2, where n™"

grows: for this reason we introduce an approximation that_ , /N is the minimum number of contacls=1,/2 and sum

allows us to evaluate them analytically. First, we test ourgyer i obtaining

approximation against the exact numerical results obtained

by DLRC in the case of a homopolyméwrith N<25) on a _ Ny .Lmin T aN T

two-dimensional2D) Manhattan lattice; then we apply it to Z=Po"Ly(N)[P(xy X KT K) e "D(Xl’xz’kJrl’M/i)l]’

our model. (113
From now on we specialize to the case of a nonpola

homopolymer of lengtitN on a 2D square latticez&4). Let (Nherew 's given by

us now come to the main point of our approach, i.e., let us 2p
introduce an approximation for the unknown quantity H(X,y:p,q)= X
£(n,(C)};N) in Eq. (5), representing the number of polymer T (=1 (x2-y)(y—1)

conformations characterized by the same {sef. We ob- _
: ' X {x24x2@"P*2)(y—1)

serve that this number must be strongly dependemi_grihe y

total number of water-monomer contacts, which in turn is —y[1+(x2—1)yd P, (11b)

related to the number of monomer-monomey, contacts by

Ne=M—2ny,, and hence is a rough measure of hOW COM-rpg thermodynamical observablds, Cy, (n,), and(n*)
pact the polymer is. Then, our approximation is built in theare then computed according to their definitions.

following three stepsti) We assume thag({n;(C)};N) de- The approximation we introduced contains the threshold
pends essentially on, and not on each of the,. More ~ N .
parameter,n., which is not a free parameter, but is un-

recisely, we assume that, at fixed number of contagts . ) )
b y €t émown; its evaluation would require the knowledge of the

the number of conformations in which there are water site > umber of walks of arbitrary lenath and number of internal
with three or more contacts with the polymer is negligible u W . ltrary length u rorin
gontacts on a lattice. In order to circumvent this difficulty,

(single and double contacts are much more likely to appear;” "~~~ . o
due to geometrical reasonso thatZ({n,(C)};N) does not We flx_nC applying our approximation to the DLRC _model,
depend oms andn,. Moreover, we assume also thais the for which we know the results from exact enumeration on a

same for eacim,, n, such thamn,+2n,=n., i.e., 2D Manhattan latticd3]. Using our method, the best ap-
proximation of the DLRC model specific heat is obtained
{{nAC)EN)={(ne;N)=Cp(nyp), (8)  usingn.=n""23/20; we choose this value for,. For the

. . parametew, Eq.(10b) holds, where, for a Manhattan lattice,
where Cy(nyy) is the number of walks of lengtiN with wsaw=1.7335[7] and uw~expG/m)=1.3385 G is the
Npn= (M —n.)/2 internal contactgii) We consideg(n,;N) Catalan constan{8].
as characterized by two regimes, a globular and an extended | et us now move to our model. Since the discretization of
one, referred to ag; and{y, respectively, which come into the water energy levels is artificidhnd we set it as our

play depending on the value af, arbitrary energy unjt the ratioa of the hydrogen bond en-
_ ergy to the level spacing is a free parameter. We ch@ose
Lc(ne;N) if n.>ng =100; yet, we verified that even remarkable changesdo
{{nAC)H= Z4(n;N) if n <P ©) not imply major modifications of the behavior of the thermo-
L] C\ [

dynamic quantities. The values of the other parameters have

This is justified by the fact that the polymer shows, at differ-Peen fixed accoiding to their physical meaning, i.e., we have
ent temperatures, either a globular, compact phase or an egP0sem=20, E* =2a, K=a\m. Given the lengtiN of the
tended one. The latter involves a high number of water-

monomer contacts)., while the former is characterized by 1.4
small values ofn,, namely,n.=N?%"1as in the case of a 1.2
maximally compact state. We assume that a step function in 1o
the number of contacts separates these regimes; the position )
of the stepn., is at present unknowriii) We consider the 0.8 -
extended conformations as self-avoiding wal8&Ws) and o6y } I -
the compact ones as Hamiltonian wallk$Ws): their num- 04t [~ T
bers are both exponential M, and are related by 0.2

Ze(N)=exp(aN)Zg(N), (10a 5 10 100 1000 5000

o T
wherea is given by
FIG. 1. Specific heat=C, /(mM) (solid line, rescaled by a
a=10g usaw— 109 whw (10b) factor of 0.2 for graphical reasonsaverage number of water-

_ o monomer contactén. /M) (dash-dotted ling and average number
and usaw, mpw are the respective connectivity constantsof contacts with water in the * staten*/M) (dashed ling as a
[6]. function of T. HereN=25 andJ= —E*/2.



RAPID COMMUNICATIONS

PRE 61 LATTICE MODEL FOR COLD AND WARM SWELLING CF. .. R2211

50 ergy lossE* . For values of] closer to zero the cold collapse
is lost: at low temperatures the polymer is compact, then it

10 swells smoothl_y at high temperatures. _ _
5 \ To summarize, we have defined and discussed a lattice

13 ;N model for water-polymer interaction, where water is explic-
O\ itly considered, and introduced an approximation scheme
1 ! ‘,\ J N\ that aII_owed us to analytically evaluate the relevant thermo-
0.5 g N7 dynamical averages. We remark that our model cannot be
: — mapped onto a model with monomer-monomer contact inter-

actions alone. We addressed the homopolymer case and ob-
5 10 15 20 25 30 35 served that, for reasonable values of the parameters, the
T polymer is in a compact conformation at intermediate tem-
FIG. 2. c=Cy/(mM) for N=16 (dashed ling and N=100 ~ Peratures, and swells when the temperature is lowered as
(solid line). J= — E*/2. Here and in Fig. T is in (arbitrary) energy yveII as_when it is raised. '_I'h|s recalls S|_m|lar protein beha_v-
units, so that is dimensionless. ior. While the “cold unfolding” process is sharp, and possi-
bly represents a phase transitionNs:> o, thermal swelling
is smooth. The absence of a sharp transition at high tempera-

number of sites which can wet the chgiff J=— E*/2, at ture could possibly be attributed to the lack of specificity in

. interactions: we expect that the heteropolymer casebe
low T the polymer is extended and c_ompletely wet by th.estudied next will show more similarities to real proteins.
solvent, as should be a neighbor-avoiding walk. Then, rais=

ina the temperature above a certdim T.~13. the polvmer The fact that our results are indeed qualitatively similar to
bgcomes cgm ad(n,) drops to that o;_a m,aximgll ycom- those of DLRC[3], in spite of the differences in the model
pact conformaﬁob(aﬁd finaﬁly asT grows further, it )s(wells studied(many states versus two, temperature-dependent de-
again smoothlysee Fig. . The specific heat has a peak at generacy, etg, suggests that the polymer behavior we both

. find out is not a peculiarity of a particular model, but a prop-
Ti ar_1d another one at a hlgher temperature, when the pc)lyérty of a class of them: it is likely that the crucial thing is to
mer is compact. The latter is related to the excitation of thqL

ter sit dth | . ¢ p i ake into account explicitly the degrees of freedom of the
water sites around the polymer in compact conformation ou olvent, though in a simplified way. Indeed it appe@se,
of the * state, as witnessed by the drop(of ) to zero in

' e.g., Ref[10], where a model of random heteropolymers is
correspondence of the peak; the former peaRgtwhose jnyroquced and studigdhat if the solvent's degrees are ne-

height grows with the lengtN (see Fig. 2, could be related  giacted from the beginning, and hydrophobicity is attributed
to a true phase transition, reminding cold unfolding in pro-t5 monomers like a “charge,” cold unfolding will not be

teins. The thermal swelling of t_he_ polymer is prese_n_t heref_ound for non-polar homopolymers, and probably even for
but does not have the characteristic of a phase transition, asdhenched random heteropolymers.

happens, for instance, [®]. Yet this is not a surprise, due to

the absence of any kind of imposed cooperativity in our

model. It is interesting to notice that, at low temperatures, the We thank P. De Los Rios for useful discussions and criti-
polymer is expanded even for moderate valueg,dfe., J cism and for having provided us access to his results prior to
~ —E*/2: this means that, in the presence of a monomerpublication, and M. Rasetti for a critical reading of the
water prefers to stay in the excited special state, even whemanuscript. We also acknowledge A. Pelizzola, F. Seno, and
the energetic gaid does not apparently compensate the en-G. Tiana for fruitful discussions.

polymer, we setN,,=M=2N+2 (which is the maximum
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