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Lattice model for cold and warm swelling of polymers in water

Pierpaolo Bruscolini* and Lapo Casetti†

Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

~Received 11 October 1999!

We define a lattice model for the interaction of a polymer with water. We solve the model in a suitable
approximation. In the case of a nonpolar homopolymer, for reasonable values of the parameters, the polymer
is found in a noncompact conformation at low temperature; as the temperature grows, there is a sharp transition
towards a compact state, then, at higher temperatures, the polymer swells again. This behavior closely reminds
one of that of proteins that are unfolded at both low and high temperatures.

PACS number~s!: 61.25.Hq, 05.20.2y, 05.40.Fb, 87.10.1e
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The theoretical modeling of the behavior of polymers
aqueous solution is a long-standing problem which has
ceived considerable attention also in connection with
problem of protein folding. It is commonly believed@1# that
the organization of water molecules in quasiordered str
tures around nonpolar monomers plays a fundamental ro
stabilizing the folded ‘‘native’’ state of a protein, namely, th
biologically active state. In simple models of protein foldin
however, water is usually taken into account within the de
nition of the interactions between amino acids, rather th
explicitly considering water-monomer interactions. The
tionale for this approach@2# is that water behaves as a ba
solvent for hydrophobic monomers, and this can be mode
by an effective Hamiltonian with attractive monome
monomer interactions. However, an ‘‘exact’’ effectiv
Hamiltonian, obtained from a partial trace over water d
grees of freedom, should in principle depend also on
temperature and on the conformation of the polymer. Hen
it is interesting to study simple models where the role
water can be considered explicitly.

Here we introduce a lattice model where each site is
cupied either by a monomer or by water molecules. Wa
monomer interactions depend on the state of water; wa
water interactions are dealt with in a coarse-grained way.
distinguish between the effect of the presence of water
any other, monomer-monomer interactions are neglec
The model can be thought of as a generalization of the
proposed by De Los Rios and Caldarelli~DLRC! @3#. Our
generalization is an attempt to model more carefully the w
ter degrees of freedom, yet keeping the description as sim
as to obtain a model that can be approached by analy
techniques. Specializing to the case of a nonpolar homop
mer, we introduce a suitable approximation scheme
evaluate analytically the partition function, the specific h
and the average number of water-polymer contacts, whic
a measure of the compactness of the polymer conforma
We find that, for reasonable values of the parameters,
polymer behaves as follows: at low temperatures, it is fou
in a noncompact conformation. As the temperature gro
there is a sharp transition towards a compact state, assoc
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with a sharp peak in the specific heat of the water-polym
system; then, at higher temperatures, the polymer sw
again, smoothly. This behavior reminds one of proteins, t
are unfolded at both low and high temperatures@4#.

Let us now define our model. We consider
d-dimensional lattice withNs sites and coordination numbe
z. Each lattice site is occupied either by a monomer of
polymer or by a water ‘‘cluster.’’ The polymer is made ofN
monomers. Each monomer can be either hydrophobic~H! or
polar (P), to which cases we associates50,1, respectively.
The sequence ofH ’s andP’s is fixed, so that thes ’s are not
dynamical variables. The number of water clusters isNw
5Ns2N. Each water cluster is a system ofm water mol-
ecules, to account for the fact that several water molecu
are affected by the presence of a monomer. For each clu
the state-space has an ordinary part, characterized byx50
and made up of an infinity of statesq50,1,2, . . . ,̀ , and a
special part, withx51, containing only the state ‘‘*.’’ This
state is special in the sense that it more favorably intera
with hydrophobic monomers, as we will see in the followin
The choices of a discrete spectrum and of a unique spe
state are made for the sake of simplicity.

The model Hamiltonian is written as a sum of a nonint
acting water term plus a water-polymer interaction; no e
ergy is associated to the polymer alone:

H5Hwater1Hint . ~1!

The first term has the form

Hwater5(
j 51

Nw

@q j~12x j !1E* x j #, ~2!

whereE* .0. For each labelj the stateq j50 represents ice
i.e., a completely ordered state, with two hydrogen bonds
molecule. Each water-filled site, representing a cell ofm
molecules, in theq50 state has 2m hydrogen-bonds, a frac
tion of which is buried in the bulk of the cell, while the re
connects neighboring cells; we set the energy of this s
equal to zero. The states (x j50; q j51,2, . . . ) areexcited
states obtained by adding kinetic energy to the water clus
the hydrogen bonds are weakened and, eventually, bro
According to this coarse-grained description, which dis
gards the details of water-water interactions, the degene
R2208 ©2000 The American Physical Society
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g(q) of the energy levelq is given by the number of way
in which one can assignq ‘‘quanta’’ of energy to them
molecules, i.e., the number of ordered partitions ofq objects
in m classes:g(q)5( q

m1q21).
The special state (x51; *! models the partial ordering

that water molecules are believed to assume in presence
non-polar residue@1#. It is indeed an excited states of ener
E* , with a peculiar character: them water molecules are
thought of as geometrically ordered in the cell, so th
hydrogen-bond weakening and breaking affects only the
face molecules in the water-filled site. An accurate eval
tion of the degeneracyg* of this state would require a de
tailed specification of the microscopic geometry of wat
which is beyond the scope of the present analysis; never
less, a crude estimate of it can be given by noticing that
the presence of a water-monomer contact,meff'zm(d21/d)

water molecules shall rearrange in an ordered conforma
to maximize hydrogen-bonding. Then, reasoning as bef
g* will be given by the number of ways to assignq* 5E*

quanta to themeff molecules, i.e.,g* 5(
q*

†@meff] ‡1q* 21
), where

†@•#‡ is the integer part of •.
The second term in Hamiltonian~1! is

Hint5(
i 51

N

(
j 51

Nw

D i j s i@J x j1K~12x j !#, ~3!

where D i j 51 if i and j are nearest-neighbors andD i j 50
otherwise,K.0 ~respectivelyJ<0) is the energy cost~re-
spectively gain! of a contact between a H monomer and a
water site in an ordinary state~respectively special * state!.
The form of Eq. ~3! can be understood if we consider
‘‘droplet’’ of hydrophobic monomers in a water-filled lattice
and analyze the energy balance in exchanging a water
with a monomer~both taken from the respective bulks!. If
the water is in an ordinary state, each contact with a mo
mer will break up to;m(d21/d) hydrogen bonds betwee
neighboring water cells. Ifa.0 is the energy involved in a
bond~in units of the spacing between the levels!, this process
yields an energy cost ofK.m(d21/d)a, while the cost will be
zero if the water is in the special * state. At the same tim
nonpolar residues interact more favorably with water th
with each other, due to the permanent dipole momen
water @5#. This is taken into account by assuming an ene
gainJ(2a&J<0) for a contact between water in the * sta
and a hydrophobic monomer. It should be clear that t
theoretical framework is not meant to provide a detailed
croscopic description of the physics of water, but rather
account for the basic ingredients of nonpolar solvation:
existence of an icelike ground state of zero entropy for wa
and of a set of excited states, some of which may be part
larly suited for interaction with nonpolar solutes, but invol
a substantial entropy loss.

Let us now study the equilibrium thermodynamical pro
erties of the model. To compute the partition function it
useful to introduce some notations. The maximum numbe
contacts between water andH monomers is obtained whe
the polymer is in an extended configuration, so thatM5(z
22)NH1s11sN , where NH is the number of non-pola
residues. Given a configurationC of the polymer, the energy
of the system can be written as
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H~C!5(
j 51

Nw

@~12x j !~q j1Kl j !1x j~E* 1Jl j !#, ~4!

wherel j[l j (C) is the number of contacts between thej th
water cluster andH monomers. Denoting bynl (C) the num-
ber of water clusters that havel contacts withH monomers,
the partition function of the model can be written as

Z5(
C

Z~C!5 (
$nl %

z„$nl ~C!%;N…Z„$nl ~C!%…, ~5a!

Z~$nl ~C!%!5(
$q%

e2bH(C), ~5b!

whereb51/T and z„$nl (C)%;N… is the number of equiva-
lent conformations for a polymer of length N, i.e., of th
conformations with the same set ofnl ’s. Now, to ease the
notation let us putZ(C)5Z($nl (C)%). Using Eq.~4!, and
the fact that water cells do not interact with each other,
that it is possible to factorZ(C) according to the labelsj
51, . . . ,Nw , Z(C) can be written as

Z~C!5P0
Nw )

l 51

z

x
l

nl (C) , ~6a!

wherexl 5Pl /P0, and

Pl 5g* e2b(E* 1Jl )1e2bKl
1

~12e2b!m
. ~6b!

The mean energy and the specific heat are evaluated in
standard way asU5^H&52] logZ/]b and CV5]U/]T.
The average number of water sites presentingl contacts
with the polymer can be computed aŝ nl &
5xl (] logZ/]xl ), from which one can obtain the averag
~total! number ofH-water contacts,̂nc&5( l l ^nl &, which
is a measure of the compactness of the polymer. Ano
interesting observable is the average number of contacts
water sites in the * state, given by^nc* &52T] logZ/]J.

Notice that, even in the simple hydrophobic homopolym
case, our model cannot be mapped onto a polymer mo
with monomer-monomer contact interactions, because
partition function~5! cannot be written in the form

Z5(
nHH

j~nHH! e2bhnHH, ~7!

where nHH5(M2(l nl )/2 is the number of monomer
monomer contacts andj(nHH) is the number of polymer
configurations withnHH internal contacts, withh a true cou-
pling constant, independent ofT and$nl %.

Before going further with the discussion of the thermod
namical properties of our model, let us note that the partit
function of the DLRC model@3# can be obtained from the
present one with the substitutionsg* →1, E* →0, (1
2e2b)2m→q21, due to the fact that in the DLRC mode
all the states are equivalent~with zero energy! for pure wa-
ter, and when a water-monomer interaction takes place,
special state has zero entropy, while the degeneracy of
excited states is independent of the temperature. In b
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models one has to perform a sum over the conformation
the polymer to calculate the thermodynamical functio
This is a hard numerical task when the length of the polym
grows: for this reason we introduce an approximation t
allows us to evaluate them analytically. First, we test o
approximation against the exact numerical results obtai
by DLRC in the case of a homopolymer~with N<25) on a
two-dimensional~2D! Manhattan lattice; then we apply it t
our model.

From now on we specialize to the case of a nonpo
homopolymer of lengthN on a 2D square lattice (z54). Let
us now come to the main point of our approach, i.e., let
introduce an approximation for the unknown quant
z„$nl(C)%;N… in Eq. ~5!, representing the number of polyme
conformations characterized by the same set$nl %. We ob-
serve that this number must be strongly dependent onnc , the
total number of water-monomer contacts, which in turn
related to the number of monomer-monomernHH contacts by
nc5M22nHH , and hence is a rough measure of how co
pact the polymer is. Then, our approximation is built in t
following three steps:~i! We assume thatz„$nl(C)%;N… de-
pends essentially onnc and not on each of thenl . More
precisely, we assume that, at fixed number of contactsnc ,
the number of conformations in which there are water s
with three or more contacts with the polymer is negligib
~single and double contacts are much more likely to app
due to geometrical reasons!, so thatz„$nl (C)%;N… does not
depend onn3 andn4. Moreover, we assume also thatz is the
same for eachn1 , n2 such thatn112n25nc , i.e.,

z~$nl ~C!%;N!5z~nc ;N![CN~nHH!, ~8!

where CN(nHH) is the number of walks of lengthN with
nHH5(M2nc)/2 internal contacts.~ii ! We considerz(nc ;N)
as characterized by two regimes, a globular and an exten
one, referred to aszc andzg , respectively, which come into
play depending on the value ofnc ,

z„$nl ~C!%…5H zc~nc ;N! if nc.ñc

zg~nc ;N! if nc<ñc .
~9!

This is justified by the fact that the polymer shows, at diffe
ent temperatures, either a globular, compact phase or an
tended one. The latter involves a high number of wat
monomer contacts,nc , while the former is characterized b
small values ofnc , namely,nc}Nd21/d, as in the case of a
maximally compact state. We assume that a step functio
the number of contacts separates these regimes; the po
of the step,ñc , is at present unknown.~iii ! We consider the
extended conformations as self-avoiding walks~SAWs! and
the compact ones as Hamiltonian walks~HWs!: their num-
bers are both exponential inN, and are related by

zc~N!.exp~aN!zg~N!, ~10a!

wherea is given by

a5 logmSAW2 logmHW ~10b!

and mSAW, mHW are the respective connectivity constan
@6#.
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Resorting to the above assumptions we can evaluate
partition function. In the homopolymer casenc is always
even, so that we setk5nc/2, kmin5nc

min/2, where nc
min

.zAN is the minimum number of contacts,k̃5ñc/2 and sum
over k, obtaining

Z5P0
Nwzg~N!@c~x1 ,x2 ;kmin,k̃!1eaNc~x1 ,x2 ; k̃11,M /2!#,

~11a!

wherec is given by

c~x,y;p,q!5
x2p

~x221!~x22y!~y21!

3$x21x2(q2p12)~y21!

2y@11~x221!yq2p11#%. ~11b!

The thermodynamical observables,U, CV , ^nl &, and ^nc* &
are then computed according to their definitions.

The approximation we introduced contains the thresh
parameter,ñc , which is not a free parameter, but is u
known; its evaluation would require the knowledge of t
number of walks of arbitrary length and number of intern
contacts on a lattice. In order to circumvent this difficult
we fix ñc applying our approximation to the DLRC mode
for which we know the results from exact enumeration on
2D Manhattan lattice@3#. Using our method, the best ap
proximation of the DLRC model specific heat is obtain
using ñc5nc

min 23/20; we choose this value forñc . For the
parametera, Eq. ~10b! holds, where, for a Manhattan lattice
mSAW51.7335 @7# and mHW'exp(G/p)51.3385 (G is the
Catalan constant! @8#.

Let us now move to our model. Since the discretization
the water energy levels is artificial~and we set it as our
arbitrary energy unit!, the ratioa of the hydrogen bond en
ergy to the level spacing is a free parameter. We choosa
5100; yet, we verified that even remarkable changes ina do
not imply major modifications of the behavior of the therm
dynamic quantities. The values of the other parameters h
been fixed according to their physical meaning, i.e., we h
chosenm520, E* 52a, K5aAm. Given the lengthN of the

FIG. 1. Specific heatc5CV /(mM) ~solid line, rescaled by a
factor of 0.2 for graphical reasons!, average number of water
monomer contactŝnc /M & ~dash-dotted line!, and average numbe
of contacts with water in the * statênc* /M & ~dashed line! as a
function of T. HereN525 andJ52E* /2.
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polymer, we setNw5M52N12 ~which is the maximum
number of sites which can wet the chain!. If J&2E* /2, at
low T the polymer is extended and completely wet by t
solvent, as should be a neighbor-avoiding walk. Then, r
ing the temperature above a certainT5Tf.13, the polymer
becomes compact~^nc& drops to that of a maximally com
pact conformation!, and finally, asT grows further, it swells
again smoothly~see Fig. 1!. The specific heat has a peak
Tf and another one at a higher temperature, when the p
mer is compact. The latter is related to the excitation of
water sites around the polymer in compact conformation
of the * state, as witnessed by the drop of^nc* & to zero in
correspondence of the peak; the former peak atTf , whose
height grows with the lengthN ~see Fig. 2!, could be related
to a true phase transition, reminding cold unfolding in p
teins. The thermal swelling of the polymer is present he
but does not have the characteristic of a phase transition,
happens, for instance, in@9#. Yet this is not a surprise, due t
the absence of any kind of imposed cooperativity in o
model. It is interesting to notice that, at low temperatures,
polymer is expanded even for moderate values ofJ, i.e., J
'2E* /2: this means that, in the presence of a monom
water prefers to stay in the excited special state, even w
the energetic gainJ does not apparently compensate the

FIG. 2. c5CV /(mM) for N516 ~dashed line! and N5100
~solid line!. J52E* /2. Here and in Fig. 1T is in ~arbitrary! energy
units, so thatc is dimensionless.
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ergy lossE* . For values ofJ closer to zero the cold collaps
is lost: at low temperatures the polymer is compact, the
swells smoothly at high temperatures.

To summarize, we have defined and discussed a la
model for water-polymer interaction, where water is expl
itly considered, and introduced an approximation sche
that allowed us to analytically evaluate the relevant therm
dynamical averages. We remark that our model cannot
mapped onto a model with monomer-monomer contact in
actions alone. We addressed the homopolymer case and
served that, for reasonable values of the parameters,
polymer is in a compact conformation at intermediate te
peratures, and swells when the temperature is lowered
well as when it is raised. This recalls similar protein beha
ior. While the ‘‘cold unfolding’’ process is sharp, and poss
bly represents a phase transition asN→`, thermal swelling
is smooth. The absence of a sharp transition at high temp
ture could possibly be attributed to the lack of specificity
interactions: we expect that the heteropolymer case~to be
studied next! will show more similarities to real proteins
The fact that our results are indeed qualitatively similar
those of DLRC@3#, in spite of the differences in the mode
studied~many states versus two, temperature-dependent
generacy, etc.!, suggests that the polymer behavior we bo
find out is not a peculiarity of a particular model, but a pro
erty of a class of them: it is likely that the crucial thing is
take into account explicitly the degrees of freedom of t
solvent, though in a simplified way. Indeed it appears~see,
e.g., Ref.@10#, where a model of random heteropolymers
introduced and studied! that if the solvent’s degrees are n
glected from the beginning, and hydrophobicity is attribut
to monomers like a ‘‘charge,’’ cold unfolding will not be
found for non-polar homopolymers, and probably even
quenched random heteropolymers.

We thank P. De Los Rios for useful discussions and cr
cism and for having provided us access to his results prio
publication, and M. Rasetti for a critical reading of th
manuscript. We also acknowledge A. Pelizzola, F. Seno,
G. Tiana for fruitful discussions.
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